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Abstract. A recent analytic theory of two-dimensional isotropic percolation indicates that
the critical behaviour near p. is determined by the same renormalisation group fixed point
describing the behaviour of the associated dilute Ising model. A specific prediction is that
the mean number of clusters, K(p), contains a singularity of the form K(p)~

Ip = p.? Infin|p — p.||, rather than the currently accepted form K(p)~[p—pJ*™®, with a =

-2, Novel series expansion studies for the site and bond percolation problems on the

triangular and simple quadratic lattices, respectively, are presented in support of the new
finding, which implies the absence of a separate universality class for two-dimensional
percolation processes.

1. Introduction

The scaling theory of percolation processes (for a review see Stauffer (1979), Essam
(1980) and Deutscher et al (1983)) has been developed extensively over the last decade,
borrowing heavily from the familiar description of ordinary critical phenomena. A
consistent picture has emerged in which the leading asymptotic behaviour of the various
geometric properties of percolation is taken to be as follows:

K(p)~lp=pl P(p)~|p-p.° S(p)~lp-pd™

C(p,r)~r"%""exp(—r/§) &p)~lp-pd ™" (1.1)

Here, p is the concentration of the percolating species and the subscript ‘c’ denotes
the critical point, or percolation threshold. Also, K( p) is the mean number of clusters
per site, P( p) the percolation probability, S(p) the mean cluster size, C(p, r) the pair
connectedness function and £(p) the pair connectedness length. The set of critical
exponents thus defined, a, B8, v, » and v, has been the object of numerous theoretical
studies which have made use of a variety of approximate techniques. Unfortunately,
no rigorous exact results are available for percolation processes on ordinary lattices
for dimensions d > 1, except for the values of p. for a few two-dimensional (2p) lattices
(in particular, p. =3 for both the site percolation problem on the triangular lattice (STR)
and the bond percolation problem on the simple quadratic lattice (BsQ) (Sykes and
Essam 1964)). However, it is believed that the exponents of a percolation process
belong to a universality class of their own. As is well known, this universality class
can be identified with that of the ¢ =1 limit of the g-state Potts model (Kasteleyn and
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Fortuin 1969, Fortuin and Kasteleyn 1972, Wu 1982) or, alternatively, with that of the
zero temperature limit of the dilute Ising model on the lattice sustaining the percolation
process (Elliott et al 1960, Essam 1980, Stinchcombe 1983). This suggests that, for
the latter model, a crossover in the critical properties takes place as T~ 0 and p- p.,
indicating that the point T=0 and p = p. is a special multicritical point (Stauffer 1975,
Lubensky 1977, 1979, Stanley et al 1976, Stephen and Grest 1977). Both the mapping
of percolation on the Potts model and on the dilute Ising model have been widely
exploited in the study of the behaviour near p..

In the case of 2D percolation processes, the critical exponents are known to a high
degree of accuracy. Indeed, the claim has been advanced (den Nijs 1979, Nienhuis
et al 1980) that the exponents are now known exactly in the form of rational fractions;
for instance, @ =—3% and » =% These conjectured ‘exact’ values are the result, for
instance, of an assumed mapping of the 2p Potts model onto the 20 Coulomb gas
model which in turn, under certain other plausible assumptions, is exactly solvable
for the critical behaviour (Nienhuis 1984). The values thus obtained for the g-state
Potts model have also been confirmed, for g > 1, by recent studies based on the assumed
conformal invarjance for this model (Friedan et al 1984). Nonetheless, for percolation
all of these theories, whether approximate or conjectured exact, rely on the basic
assumption that the asymptotic behaviour near p. is given by equation (1.1).

In a recent paper (Jug 1984), I have proposed a novel theoretical tool for studying
the behaviour at phase transitions in 2D Ising spin models. The new method is based
on a Grassmann path integral (Gp1) representation (Samuel 1980) for the 2p Ising
model on the simple quadratic lattice, which is known to possess an exact solution
(Onsager 1944), and on a perturbative treatment of any non-ideal feature. When
applied to the 2p bond-dilute Ising model, the Gp1 approach appears to contain a
faithful description of the percolation limit. To date, this includes an accurate perturba-
tive evaluation of p. and K(p), as well as the correct behaviour of the critical line
T.(p) near p.. Furthermore, by taking the continuum limit of the Gp1 lattice theory,
an exact renormalisation group (RG) treatment for the singular behaviour of K(p)
near p. can be developed (Jug 1984). In terms of the n -0 Grassmann fields ¢, the
continuum GPI action reads

n 2
S=ﬁ=J' dzx[%i ; J"(m+6)w"—g(§: «17"«11") ] (1.2)

where m o pt —(pt)., g1~ p and where 1 =tanh(BJ) is the usual Ising thermal vari-
able (8=1/ksT). One can see from equation (1.2) that the rG fixed point g*=0
provides a description of the critical behaviour all along the critical line pt = (pt).. In
particular, if p(> p.) is kept fixed, one obtains a specific heat anomaly of the form
C(T)~In|In|T - T.(p)||; this result has also been obtained by other authors (Wolff
and Zittartz 1983), using techniques other than the ra. If, on the other hand, one sets
T =0, then equation (1.2) yields the following singular form for the percolation K (p):

K(p)~|p—pinfinlp-p.| (1.3)

which implies that a =0, just as for the associated dilute Ising exponent. In other
words, the form of the mass m in equation (1.2), along with the absence of a new
symmetry or of a singular temperature dependence when T-0 in S.q, implies that
the 2D percolation threshold does not represent a multicritical point, once the proper
scaling variables are identified. These scaling variables are 7— ¢, (that is, T — T, for
T.>0 and exp(—28J) for T.,=0) and p—p.. According to the GpI1 theory, in terms of
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these variables the critical behaviour is the same for both the 2p dilute Ising and the
percolation critical points, implying the absence of a separate universality class for 2D
percolation processes. This unexpected result is a direct consequence of the Gpi
approach to the critical properties of the 2D dilute Ising model (Jug 1984), the only
assumptions involved being those of the established field-theoretic RG method (Brézin
et al 1976) which is carried out in an exact fashion in the case of equation (1.2). Thus
far, all attempts to demonstrate that equation (1.2) and its present RG solution are
incorrect have been ill fated and equation (1.3) stands as an exact result, in the sense
of the renormalisation group theory. Note that, owing to the mapping of the percolation
problem onto the g =1 Potts model, equation (1.2) also implies that the accepted
critical behaviour of this model in 2p should be re-examined. The fact that no new
symmetry arises in the Gpi approach for T =0 is in contrast with the results of another
field-theoretic rRG treatment of the dilute Ising model (Stephen and Grest 1977, Wallace
and Young 1978), which is however only appropriate for high space dimensions (Fucito
and Parisi 1981). The new finding (Jug 1984) is then probably an accident associated
with the topology of the two-dimensional space and with the fact that disorder is a
marginal perturbation for the Ising model in d =2.

The prediction, equation (1.3), of the Gr1 approach to 20 percolation and its general
implications are rather surprising in view of the body of evidence that has been
accumulated in support of the accepted scaling theory, summarised by equation (1.1).
However, it should be noticed that the Gp1 theory differs from any other theory of 2D
percolation in that it predicts a marginal rG fixed point and non-power-law singularities.
Indeed, although to date equation (1.3) is the only available prediction, it is expected
that marginal corrections will also be present for the remaining properties of 2p
percolation. It is then possibie that, by relying on the assumptions of equation (1.1),
all other theories have been deceived by these marginal corrections.

In order to investigate this possibility, I will present in this paper a re-analysis of
the series expansions for the mean number of clusters per site, K (p), of 2D percolation,
having in view the GP1 prediction for the singularity, equation (1.3). This study seems
all the more appropriate as, historically, the first successful scaling theory of percolation
has arisen from series expansion studies (Essam 1980). In a subsequent paper, the
nature of the singularity in K( p) will be investigated through use of a novel numerical
method, thus providing a separate independent test of the competing theories.

The remainder of this paper is organised as follows. In § 2 the original series
analysis for K(p) by Domb and Pearce (1976) is re-examined and it is shown that the
apparent convergence towards @~ —3 may be due to the presence of a very weak
logarithmic correction, such as in equation (1.3). In §3 the specific analysis for
logarithmic corrections in K(p) is developed for the BsqQ percolation problem, and in
§ 4 the method is extended to the sTrR case. These two percolation problems lend
themselves naturally to this type of analysis, which requires the knowledge of the exact
value of p. (Adler and Privman 1981). Section 5 contains a discussion of the results
obtained and my conclusions. A preliminary brief account of this work has already
appeared elsewhere (Jug 1985).

2. Search for simple power-law behaviour and its critique

2.1. The original analysis of Domb and Pearce

In their original paper, Domb and Pearce (1976, hereafter referred to as pp) assumed
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for K(p) the conventional power-law singular behaviour, equation (1.1). The series
analysis is complicated by the presence of an unphysical singularity in the left half of
the complex p plane superimposed to the weak singularity at p.. As shown by Dp, the
interference from the unphysical singularity can be minimised by performing the change
of variable u = p(1—p), and by analysing the resulting series for K(p(u)). Moreover,
duality can be built into the method by considering the expansion for

B(u)=K(p(u))—3¢(p(u)) =) Bu"

where ¢(p)=p—3p>+2p° is the matching polynomial (Sykes and Essam 1964) for
both BsQ and sTR problems. In this way, the dominant singularity is at u=u.=
p{1—p) =13 ppr employed the ratio test method and considered the convergence of
the first-order Neville table extrapolants,

G,=nH,—-(n—1)H,_,
where
H,=1+ n(ucBn/Bn—l - 1)

According to this method, for n» 1, G, =-1+a/2+0(n"?). For the 19-term series
relative to the BsqQ problem, the original analysis of DP is shown in figure 1 (broken
line); it can be seen that this analysis strongly suggests convergence towards the value
@ =—3. DP extended their analysis to the 22-term series relative to the sTR problem
and came to the same conclusion for the value of a.

2.2. Analysis for a model series expansion

Despite the considerable success of the method employed by pp, one could argue, in
view of the form advanced by the Gp1 theory, equation (1.3), that the presence of a
very weak logarithmic correction may also lead to a (fictitious) value of a #0. In
order to see this, I have applied precisely the same method used by pp to a model
series constructed by expanding

K(p)=(1-p/p)*In[1+CIn(1-p/p.)]F(p) =Y K.p" (2.1)

for which (technically) « =0, and assuming a simple power-law singularity at p.=3.
Here, C is an adjustable constant, whilst F(p) is a factor mimicking the unphysical
complex singularity present in the original series for K(p), as discussed above. This
singularity can be analysed through the change of variable w = —p(1+ p), which then
reveals a dominant singularity at wy= —py(1+ p,) = 0.259 for the series relative to the
BsQ problem. This corresponds to a pair of complex conjugate singularities p, and pg
and the ratio test reveals good convergence towards y =0.3 for an (assumed) singular

behaviour K(p)~|p—po/’. In order to simulate this behaviour, I have therefore chosen
the form

F(p)=(1+p/wo+p*/wo)

with the values of w, and y given above. The ratio test analysis conducted for the
model series in equation (2.1) indeed reveals an initial convergence towards a fictitious
value of o ~—0.4. This value appears to be virtually independent of the value of C,
which however determines the amplitude of the fluctuations in the G,. In figure 1 (full
curve), the analysis for the case C =-1.25 is shown, and one can see that the
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Figure 1. Ratio test first-order Neville table extrapolant analysis for the series expansion
of K(p) with an assumed pure power-law singularity. As n>o, G, =-1+a/2+0(1/n?).
Broken curve: original analysis of Domb and Pearce for the mean number of clusters per
site of the BSQ percolation problem. Full curve: analysis for the model series expansion
of equation (2.1), for which technically a =0.

convergence towards the fictitious value of a is very similar to that of the original
analysis of pp. Clearly, an identical convergence pattern cannot be easily reproduced,
since the true nature of the singularity at p. is unknown and, in addition, equation
(2.1) only models the leading singular behaviour at p. and p,. Nevertheless, it appears
quite evident, from the simple example given here, that misleading conclusions on the
value of a critical exponent can be drawn by assuming a pure power-law behaviour
in place of a superimposed weak logarithmic correction.

3. Search for logarithmic corrections: BsQ problem

In view of the above findings, it would seem appropriate to use an alternative method
for analysing the series for K(p). The ideal candidate is the method of Adler and
Privman (1981), which is specifically designed for the analysis of logarithmic correc-
tions. One assumes that near the singularity of interest K(p) is of the form (p <p.)

K(p)=c(p)(pc~p)"[In(p.—p)I* + b(p) (3.1)

where h =2 —a and where c(p) contains all other corrections to the leading singular
behaviour. The term b(p) in equation (3.1) represents the analytic background in
K({(p), so that the series

K{(p)=K(p)—b(p)
contains only singular terms. Then, by constructing Padé approximants to the series

g(P) = h—l(P_Pc)ln(Pc_P)[K;(P)/Ks(P)+h(Pc_P)_l] (32)

one can look for the behaviour of z=z(h) as a function of the input value of A. In
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fact, inserting the form equation {3.1) into equation (3.2), one obtains

g(p)=h"'(p—pc) In(p.—p)c'(p)/c(p)+:z
which, under the plausible assumption that

lim (p=pc) In(p.—p)c'(p)/c(p)=0

I dnd 2

yields
g(p)=z=1z(h). (3.3)

For the BsQ problem, the 19-term series expansion is as follows (M F Sykes, private
communication):

K(p)=p-3p*+2p°+p°—p +1p®—6p°+14p'°~27p" + 12 p"? —118p"* + 265p"*
—619p"°+3%1p'® —3715p' " +8953p'8 =21 061p*° +. . .. (3.4)

An analytic background contribution b( p) must be subtracted from this series before
equations (3.2) and (3.3) can be used. In the absence of further information, b(p) is
chosen in the form predicted by pe:

b(p)=K.+A(p.~p)+C(p.—p) (3.5)

with K., A and C as given by pp. Padé approximants for the g(p) thus constructed
have been analysed, and in figure 2 the corresponding approximants for the curve
z=1z(h) are presented. Only the central group of Padé approximants has been con-
sidered; specifically, all approximants [N, M] with [N —M|=0,1,2and I4s N+ M =<
18 are shown in figure 2. According to the general trend, one can conclude that the
expected result, z=0 for h =%, is not attained whereas the Gp1 prediction, z =0 for
h =2, is well supported.

The above analysis can be extended to an assumed form for the singularity in K( p)
containing a weaker logarithmic correction of the type

K(p)=c(p)(p.—p)"{In[-In(p.~p)]}?"+ b(p).

1.0

05

-0.5

18 20 2.2 2.4 26 2.8
h=2-u

Figure 2. Central group Padé approximants in the search for logarithmic corrections in

K(p) for the BsQ percolation problem. The dots denote predictions from the two competing
theories being tested.
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This singular form can be analysed through the following generalisation of equation
(3.2):
£(p)=h""(p=pc) In(p.=p) In[~In(p.~ p)ILK(p)/ K(p)+h(p.—p)"'] (3.6)
which yields

g(p.)=17=12(h). (3.7)

The analysis for equations (3.6) and (3.7) is presented in figure 3, where the central
Padé approximants [N, M] to Z=Z(h) with 14< N+ M <18 are shown. Again, the
general trend supports the Gp1 prediction, 7 =1 for h = 2, and rules out the conventional
result, =0 for h=%.

& 1 ]
18 20 2.2 2.4 2.6 2.8
h=2-a

Figure 3. Central group Padé approximants in the search for double logarithmic corrections
in K(p) for the BsQ percolation problem. The dots denote predictions from the two
competing theories being tested.

4. Search for logarithmic corrections: sTR problem

The 22-term low-density expansion for the STR percolation problem is as follows (Sykes
et al 1976, and private communication):

K(p)=p=3p>+2p°+p®—p +3p®—4p°+9p'°—15p' +30p'* - 56p"*
+120p'¢—248p'°+542p'® - 1194p'7 +2744p"*
—6267p'°+14289p°° 32 007p*' +71 529p%2 +. . .. (4.1)

It should be stressed that no Gp1 theory has been developed as yet for this percolation
problem. However, the hypothesis of universality implies that at p, the singularity of
the series in equation (4.1) ought to be the same as that for the series in equation (3.4),
thus either (1.1) or (1.3). Therefore, the analysis developed in § 3 can be extended to
the new series.

The analysis corresponding to equations (3.2) and (3.3) (log corrections) is presented
in figure 4, where the central Padé approximants [N, MJto z=z(h) with s N+ M <
21 are shown. As in the case of the BsQ problem, the general trend supports the Gp1
prediction (z=0 for h=2) and disproves the conventional theory (z=0 for h=%).
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-10 ) ] ] L
18 2.0 22 2.4 2.6 2.8
h=2-a

Figure 4. Same as in figure 2, but for the STR percolation problem.

1.5 T T T T

-0.5 L L L
18 20 2.2 24 2.6 28
h=2-ua

Figure 5. Same as in figure 3, but for the sTR percolation problem.

Finally, the analysis corresponding to equations (3.6) and (3.7) (log-log corrections)
is summarised in figure 5, which shows the central approximants [N, M] to £=%(h)
with 14< N+ M <21. Once more the new theory (£ =3 for h =2) seems to be better
supported than the conventional one (£ =0 for h=%).

5. Discussion and conclusions

The results obtained through the series expansion analysis in §8 3 and 4 seem to support
the prediction of the Gpr1 approach for K(p), equation (1.3). Particularly reassuring
is the consistency between the outcomes of the analyses for the BsQ and sTR problems.
At the same time, the inconsistency between the results of the log correction and the
log-log correction analyses for h =% would rule out both a pure power law and a
power law with a superimposed logarithmic correction with a leading exponent o = -3,
Furthermore, the ratio test analysis for the simple model series expansion in § 2.2
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indicates that weak marginal corrections to leading power-law behaviour should be
taken into account in order to reveal the true critical singularities of 2D percolation.
Thus, it is possible that earlier theories, whether approximate or conjectured exact,
may have been misled into fictitious exponents by making the assumption of ordinary,
simple power-law critical singularities.

It is interesting to remark at this point that the possibility of a breakdown, of the
sort discussed in this paper, of the accepted theory of 2D percolation has been detected
by other authors in the past. Fucito and Parisi (1981) have indeed found evidence for
the breakdown of the 6 — £ rRG theory of percolation specificallyin d = 2. For dimensions
d = 6 — ¢, this theory otherwise predicts the ordinary critical behaviour summarised by
equation (1.1). At the same time, Andelman and Berker (1981) have found real-space
RG evidence for a marginal operator describing the critical behaviour of the ¢ =1 Potts
model in d = 2. The latter finding generated some interest in the possibility of logarith-
mic corrections to the ordinary power-law exponents of 2D percolation. Such interest
was extended to series (Adler and Privman 1981) and numerical (Stauffer 1981) analysis
of log corrections for properties such as S(p), P(p) and £(p), but the results of this
search were inconclusive. Unfortunately, such interest was never extended to K(p),
for which a specific theoretical prediction now exists.

In conclusion, the study presented in this paper indicates that the Ge1 approach to
2D percolation is consistent with series expansions and that its known predictions,
including equation (1.3), are correct. It is not clear at present whether these findings
would merely imply a breakdown of the hyperscaling relation, 2— a = dv, with v =3%
in the accepted theory, or whether the entire current scaling theory of 2b percolation
is at fault. Hopefully, further results from the Gp1 approach will emerge, allowing
the construction of a consistent picture of the behaviour near p..
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