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Abstract. A recent analytic theory of two-dimensional isotropic percolation indicates that 
the critical behaviour near pc is determined by the same renormalisation group fixed point 
describing the behaviour of the associated dilute Ising model. A specific prediction is that 
the mean number of clusters, K ( p ) ,  contains a singularity of the form K ( p ) -  
Ip;pCl2 In(ln/p -pclI ,  rather than the currently accepted form K ( p ) -  ( ~ - p ~ [ ~ - ~ ,  with a = 
- 5 .  Novel series expansion studies for the site and bond percolation problems on the 
triangular and simple quadratic lattices, respectively, are presented in support of the new 
finding, which implies the absence of a separate universality class for two-dimensional 
percolation processes. 

1. Introduction 

The scaling theory of percolation processes (for a review see Stauffer (1979), Essam 
(1980) and Deutscher er a1 (1983)) has been developed extensively over the last decade, 
borrowing heavily from the familiar description of ordinary critical phenomena. A 
consistent picture has emerged in which the leading asymptotic behaviour of the various 
geometric properties of percolation is taken to be as follows: 

K (PI - IP -Pc12-p 

~ ( p ,  r ) -  r 2 - d - r )  exp(- r /  5) 

P(P) - IP -PcY S(P) - IP -Pel-' 
5( P) - IP - Pcl-”. (1.1) 

Here, p is the concentration of the percolating species and the subscript ‘c’ denotes 
the critical point, or percolation threshold. Also, K (  p )  is the mean number of clusters 
per site, P( p )  the percolation probability, S (  p )  the mean cluster size, C( p,  r )  the pair 
connectedness function and 5 ( p )  the pair connectedness length. The set of critical 
exponents thus defined, a, p, y, 7 and v, has been the object of numerous theoretical 
studies which have made use of a variety of approximate techniques. Unfortunately, 
no rigorous exact results are available for percolation processes on ordinary lattices 
for dimensions d > 1, except for the values of p c  for a few two-dimensional ( 2 ~ )  lattices 
(in particular, p c  = f for both the site percolation problem on the triangular lattice (STR) 

and the bond percolation problem on the simple quadratic lattice (BSQ) (Sykes and 
Essam 1964)). However, it is believed that the exponents of a percolation process 
belong to a universality class of their own. As is well known, this universality class 
can be identified with that of the 4 = 1 limit of the q-state Potts model (Kasteleyn and 
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Fortuin 1969, Fortuin and Kasteleyn 1972, Wu 1982) or, alternatively, with that of the 
zero temperature limit of the dilute Ising model on the lattice sustaining the percolation 
process (Elliott et al 1960, Essam 1980, Stinchcombe 1983). This suggests that, for 
the latter model, a crossover in the critical properties takes place as T+O and p + p c ,  
indicating that the point T = 0 and p = p c  is a special multicritical point (Stauffer 1975, 
Lubensky 1977, 1979, Stanley er a1 1976, Stephen and Crest 1977). Both the mapping 
of percolation on the Potts model and on the dilute Ising model have been widely 
exploited in the study of the behaviour near p, .  

In the case of 2~ percolation processes, the critical exponents are known to a high 
degree of accuracy. Indeed, the claim has been advanced (den Nijs 1979, Nienhuis 
et a1 1980) that the exponents are now known exactly in the form of rational fractions; 
for instance, a = - 3  and v = !. These conjectured 'exact' values are the result, for 
instance, of an assumed mapping of the 2~ Potts model onto the 2~ Coulomb gas 
model which in turn, under certain other plausible assumptions, is exactly solvable 
for the critical behaviour (Nienhuis 1984). The values thus obtained for the q-state 
Potts model have also been confirmed, for q > 1, by recent studies based on the assumed 
conformal invariance for this model (Friedan et a1 1984). Nonetheless, for percolation 
all of these theories, whether approximate or conjectured exact, rely on the basic 
assumption that the asymptotic behaviour near p c  is given by equation (1.1). 

In a recent paper (Jug 1984), I have proposed a novel theoretical tool for studying 
the behaviour at phase transitions in 2~ Ising spin models. The new method is based 
on a Grassmann path integral (GPI) representation (Samuel 1980) for the 2~ Ising 
model on the simple quadratic lattice, which is known to possess an exact solution 
(Onsager 1944), and on a perturbative treatment of any non-ideal feature. When 
applied to the 2~ bond-dilute Ising model, the GPI approach appears to contain a 
faithful description of the percolation limit. To date, this includes an accurate perturba- 
tive evaluation of p c  and K ( p ) ,  as well as the correct behaviour of the critical line 
T c ( p )  near p c .  Furthermore, by taking the continuum limit of the GPI lattice theory, 
an exact renormalisation group ( RG) treatment for the singular behaviour of K ( p )  
near p c  can be developed (Jug 1984). In terms of the n + 0 Grassmann fields +", the 
continuum GPI action reads 

where m x p t  - ( p t ) , ,  g a  1 - p  and where t = tanh(PJ) is the usual Ising thermal vari- 
able ( p  = l /kgT) .  One can see from equation (1.2) that the RG fixed point g* = 0 
provides a description of the critical behaviour all along the critical line p t  = ( p t ) = .  In 
particular, if p (  > p , )  is kept fixed, one obtains a specific heat anomaly of the form 
C( T )  - ln(ln1 T -  T,( p ) ( ( ;  this result has also been obtained by other authors (Wolff 
and Zittartz 1983), using techniques other than the RG. If, on the other hand, one sets 
T = 0, then equation (1.2) yields the following singular form for the percolation K ( p ) :  

(1.3) 
which implies that LY =0,  just as for the associated dilute Ising exponent. In other 
words, the form of the mass m in equation (1.2), along with the absence of a new 
symmetry or of a singular temperature dependence when T + 0 in SeR, implies that 
the 2~ percolation threshold does not represent a multicritical point, once the proper 
scaling variables are identified. These scaling variables are t - t ,  (that is, T - T, for 
T,> 0 and exp(-ZPJ) for T, = 0) and p - p c .  According to the GPI theory, in terms of 

K ( P )  - I f  -PcI2lnllnlP -Pcl I 
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these variables the critical behaviour is the same for both the 2~ dilute Ising and the 
percolation critical points, implying the absence of a separate universality class for 2~ 
percolation processes. This unexpected result is a direct consequence of the GPI 

approach to the critical properties of the 2~ dilute Ising model (Jug 1984), the only 
assumptions involved being those of the established field-theoretic RG method (BrCzin 
et a1 1976) which is carried out in an exact fashion in the case of equation (1.2). Thus 
far, all attempts to demonstrate that equation (1.2) and its present RG solution are 
incorrect have been ill fated and equation (1.3) stands as an exact result, in the sense 
of the renormalisation group theory. Note that, owing to the mapping of the percolation 
problem onto the q = 1 Potts model, equation (1.2) also implies that the accepted 
critical behaviour of this model in 2~ should be re-examined. The fact that no new 
symmetry arises in the GPI approach for T = 0 is in contrast with the results of another 
field-theoretic RG treatment of the dilute Ising model (Stephen and Grest 1977, Wallace 
and Young 1978), which is however only appropriate for high space dimensions (Fucito 
and Parisi 1981). The new finding (Jug 1984) is then probably an accident associated 
with the topology of the two-dimensional space and with the fact that disorder is a 
marginal perturbation for the Ising model in d = 2. 

The prediction, equation (1.3), of the GPI approach to 2~ percolation and its general 
implications are rather surprising in view of the body of evidence that has been 
accumulated in support of the accepted scaling theory, summarised by equation (1.1). 
However, it should be noticed that the GPI theory differs from any other theory of 2~ 

percolation in that it predicts a marginal RG fixed point and non-power-law singularities. 
Indeed, although to date equation (1.3) is the only available prediction, it is expected 
that marginal corrections will also be present for the remaining properties of 2~ 

percolation. It is then possible that, by relying on the assumptions of equation ( l . l ) ,  
all other theories have been deceived by these marginal corrections. 

In order to investigate this possibility, I will present in this paper a re-analysis of 
the series expansions for the mean number of clusters per site, K ( p ) ,  of 2~ percolation, 
having in view the GPI prediction for the singularity, equation (1.3). This study seems 
all the more appropriate as, historically, the first successful scaling theory of percolation 
has arisen from series expansion studies (Essam 1980). In a subsequent paper, the 
nature of the singularity in K ( p )  will be investigated through use of a novel numerical 
method, thus providing a separate independent test of the competing theories. 

The remainder of this paper is organised as follows. In § 2 the original series 
analysis for K (  p )  by Domb and Pearce (1976) is re-examined and it is shown that the 
apparent convergence towards a--$ may be due to the presence of a very weak 
logarithmic correction, such as in equation (1.3). In § 3 the specific analysis for 
logarithmic corrections in K ( p )  is developed for the BSQ percolation problem, and in 
§ 4 the method is extended to the STR case. These two percolation problems lend 
themselves naturally to this type of analysis, which requires the knowledge of the exact 
value of p c  (Adler and Privman 1981). Section 5 contains a discussion of the results 
obtained and my conclusions. A preliminary brief account of this work has already 
appeared elsewhere (Jug 1985). 

2. Search for simple power-law behaviour and its critique 

2.1. The original analysis of Domb and Pearce 
In their original paper, Domb and Pearce (1976, hereafter referred to as DP) assumed 



1462 G Jug 

for K ( p )  the conventional power-law singular behaviour, equation (1.1). The series 
analysis is complicated by the presence of an unphysical singularity in the left half of 
the complex p plane superimposed to the weak singularity at p , .  As shown by DP, the 
interference from the unphysical singularity can be minimised by performing the change 
of variable U = p ( l  - p ) ,  and by analysing the resulting series for K ( p ( u ) ) .  Moreover, 
duality can be built into the method by considering the expansion for 

N u )  = K ( p ( u ) )  - M P ( U ) )  =c B,U” 
n 

where +( p )  = p - 3p2 + 2p3 is the matching polynomial (Sykes and Essam 1964) for 
both BSQ and STR problems. In this way, the dominant singularity is at U = U = =  
p,( 1 - p,)  = $. DP employed the ratio test method and considered the convergence of 
the first-order Neville table extrapolants, 

G,=nH,-(n- l )H,- ,  

where 

Hn = l + n ( u , B n / B n - , - l ) .  

According to this method, for n >> 1, G, = - l + a / 2 + 0 ( n - ’ ) .  For the 19-term series 
relative to the BSQ problem, the original analysis of DP is shown in figure 1 (broken 
line); it can be seen that this analysis strongly suggests convergence towards the value 
a = -:. DP extended their analysis to the 22-term series relative to the STR problem 
and came to the same conclusion for the value of a. 

2.2. Analysis for a model series expansion 

Despite the considerable success of the method employed by DP, one could argue, in 
view of the form advanced by the GPI theory, equation (1.3),  that the presence of a 
very weak logarithmic correction may also lead to a (fictitious) value of a # 0. In 
order to see this, I have applied precisely the same method used by DP to a model 
series constructed by expanding 

K ( P )  = (1 -P/P,)’ M I  + C -p/pC)IF(p) = C  K,p“ (2.1) 
n 

for which (technically) a = 0, and assuming a simple power-law singularity at p c  = $. 
Here, C is an adjustable constant, whilst F ( p )  is a factor mimicking the unphysical 
complex singularity present in the original series for K ( p ) ,  as discussed above. This 
singularity can be analysed through the change of variable w = - p (  1 + p ) ,  which then 
reveals a dominant singularity at wo = -po( 1 + p o )  = 0.259 for the series relative to the 
BSQ problem. This corresponds to a pair of complex conjugate singularities p o  and p $  
and the ratio test reveals good convergence towards y = 0.3 for an (assumed) singular 
behaviour K (  p )  - / p  -poly .  In order to simulate this behaviour, I have therefore chosen 
the form 

F(P) = (1  + P/ W 0 + P 2 /  

with the values of wo and y given above. The ratio test analysis conducted for the 
model series in equation (2.1) indeed reveals an initial convergence towards a fictitious 
value of a - -0.4. This value appears to be virtually independent of the value of C, 
which however determines the amplitude of the fluctuations in the G,. In figure 1 (full 
curve), the analysis for the case C = -1.25 is shown, and one can see that the 
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-1.ox 

-1.1 - 

-1.2 - 
G" 

-1.3 - 
-1.4 - 

-1.5 - 

0 0.005 0.010 
l / n 2  

Figure 1. Ratio test first-order Neville table extrapolant analysis for the series expansion 
of K ( p )  with an assumed pure power-law singularity. As n+w,  G, = -1+ a / 2 + 0 ( l / n z ) .  
Broken curve: original analysis of Domb and Pearce for the mean number of clusters per 
site of the BSQ percolation problem. Full curve: analysis for the model series expansion 
of equation (2.1),  for which technically a = O .  

convergence towards the fictitious value of LY is very similar to that of the original 
analysis of DP. Clearly, an identical convergence pattern cannot be easily reproduced, 
since the true nature of the singularity at p c  is unknown and, in addition, equation 
(2.1) only models the leading singular behaviour at p c  and po.  Nevertheless, it appears 
quite evident, from the simple example given here, that misleading conclusions on the 
value of a critical exponent can be drawn by assuming a pure power-law behaviour 
in place of a superimposed weak logarithmic correction. 

3. Search for logarithmic corrections: BSQ problem 

In view of the above findings, it would seem appropriate to use an alternative method 
for analysing the series for K(p ) .  The ideal candidate is the method of Adler and 
Privman (1981), which is specifically designed for the analysis of logarithmic correc- 
tions. One assumes that near the singularity of interest K (  p )  is of the form ( p  < p c )  

K ( P )  = C(P)(Pc-P)h[ln(Pc-P)l'h + N p )  (3 .1)  
where h = 2 - LY and where c( p )  contains all other corrections to the leading singular 
behaviour. The term b ( p )  in equation (3.1) represents the analytic background in 
K (  p), so that the series 

U P )  = K ( P )  - b ( P )  

g (  P) = h - I (  P - PCM P c  - PI[ K :( P)/ K,( P) + h ( P c  - p )-'I 
contains only singular terms. Then, by constructing Pad6 approximants to the series 

(3.2) 
one can look for the behaviour of z = z ( h )  as a function of the input value of h. In 



1464 G Jug 

fact, inserting the form equation (3 .1 )  into equation (3.2), one obtains 

g ( p ) =  h - ' ( p - p , )  ln(p,-p)c '(p)/c(p)+z 

lim ( P  - p c )  ln(pc-p)c '(p)/c(p) = 0 

which, under the plausible assumption that 

P - P F  

yields 

d p c )  = = 4 h ) .  (3 .3)  
For the BSQ problem, the 19-term series expansion is as follows (M F Sykes, private 
communication): 

K (  p )  = p  - 3p2 + 2p3 + p 6  -p7+$' - 6p9+ 14p" - 27p" +?pi* - 1 1 8 ~ ' ~  + 2 6 5 ~ ' ~  

- 6 1 9 p ' 5 + y p ' 6  -3715pi7+ 8 9 5 3 ~ "  - 21 O61pl9+. . . . (3.4) 

An analytic background contribution b( p )  must be subtracted from this series before 
equations (3.2) and (3.3) can be used. In the absence of further information, b ( p )  is 
chosen in the form predicted by DP: 

b ( p ) = K , + A ( p c - p ) + C ( p c - p ) 2  (3 .5)  
with K , ,  A and C as given by DP. Pad6 approximants for the g ( p )  thus constructed 
have been analysed, and in figure 2 the corresponding approximants for the curve 
z = z (  h )  are presented. Only the central group of Pad6 approximants has been con- 
sidered; specifically, all approximants [ N, MI with IN - MI = 0, 1,2  and 14. < N + M s  
18 are shown in figure 2. According to the general trend, one can conclude that the 
expected result, z = 0 for h = 2 ,  is not attained whereas the GPI prediction, z = 0 for 
h = 2, is well supported. 

The above analysis can be extended to an assumed form for the singularity in K ( p )  
containing a weaker logarithmic correction of the type 

K ( P 1 = 4 p ) ( pc  - P ) {In[ --In( p c  - P )I) j h  + b ( p 1. 

h z 2 - u  

Figure 2. Central group Pade approximants in the search for logarithmic corrections in 
I<( p) for the ESQ percolation problem. The dots denote predictions from the two competing 
theories being tested. 
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This singular form can be analysed through the following generalisation of equation 
(3.2): 

$( P) = h - Y p  -PA In( pc - p )  In[+( p c  - p)I[K:( P)/ U p )  + h( pc -PI-' I (3.6) 

(3.7) 

which yields 

g( p c )  = i = f(h). 

The analysis for equations (3.6) and (3.7) is presented in figure 3, where the central 
PadC approximants [ N, MI to 2 = f( h )  with 14 S N + M S 18 are shown. Again, the 
general trend supports the GPI prediction, ẑ  = 4 for h = 2, and rules out the conventional 
result, z  ̂ = o for h = $. 

1.0 

0.5 
i 

0 

-0.5- 
1 0  2.0 2.2 2 . 4  2.6 2 8  

h = 2 - a  

Figure 3. Central group PadC approximants in the search for double logarithmic corrections 
in K ( p )  for the ESQ percolation problem. The dots denote predictions from the two 
competing theories being tested. 

4. Search for logarithmic corrections: STR problem 

The 22-term low-density expansion for the STR percolation problem is as follows (Sykes 
et a1 1976, and private communication): 

K ( p )  = p  -3p2+ 2p3 +p6-p7+3p8 -4p9+9pI0- 15p" +30p" - 56pi3 

+ 1 2 0 ~ ' ~ - 2 4 8 ~ ' ~ + 5 4 2 p ' ~ -  1 1 9 4 ~ ' ~ + 2 7 4 4 p ' ~  

- 6 2 6 7 ~ ' ~  + 14 2 8 9 ~ "  - 32 0 0 7 ~ ~ '  + 7 1 529pZ2 + . . . . (4.1) 

It should be stressed that no GPI theory has been developed as yet for this percolation 
problem. However, the hypothesis of universality implies that at p c  the singularity of 
the series in equation (4.1) ought to be the same as that for the series in equation (3.4), 
thus either (1.1) or (1.3). Therefore, the analysis developed in § 3 can be extended to 
the new series. 

The analysis corresponding to equations (3.2) and (3.3) (log corrections) is presented 
in figure 4, where the central Pad6 approximants [ N,  MI to z = z (  h) with 14 s N + M s 
21 are shown. As in the case of the BSQ problem, the general trend supports the GPI 

prediction ( z  = 0 for h = 2) and disproves the conventional theory ( z  = 0 for h = f ) .  
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h - 2 - a  

Figure 4. Same as in figure 2, but for the STR percolation problem. 

1 8  2 0 2.2 2 . 4  2.6 2.0 
h z 2 - a  

Figure 5. Same as in figure 3, but for the STR percolation problem. 

Finally, the analysis corresponding to equations (3.6) and (3.7) (log-log corrections) 
is summarised in figure 5 ,  which shows the central approximants [ N, MI to 2 = 2( h )  
with 1 4 s  N + M s 21. Once more the new theory ( 2  = f for h = 2) seems to be better 
supported than the conventional one ( f  = 0 for h = $). 

5. Discussion and conclusions 

The results obtained through the series expansion analysis in §§ 3 and 4 seem to support 
the prediction of the GPI approach for K ( p ) ,  equation (1.3). Particularly reassuring 
is the consistency between the outcomes of the analyses for the BSQ and STR problems. 
At the same time, the inconsistency between the results of the log correction and the 
log-log correction analyses for h =$  would rule out both a pure power law and a 
power law with a superimposed logarithmic correction with a leading exponent a = -f. 
Furthermore, the ratio test analysis for the simple model series expansion in § 2.2 
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indicates that weak marginal corrections to leading power-law behaviour should be 
taken into account in order to reveal the true critical singularities of 2~ percolation. 
Thus, it is possible that earlier theories, whether approximate or conjectured exact, 
may have been misled into fictitious exponents by making the assumption of ordinary, 
simple power-law critical singularities. 

It is interesting to remark at this point that the possibility of a breakdown, of the 
sort discussed in this paper, of the accepted theory of 2~ percolation has been detected 
by other authors in the past. Fucito and Parisi (1981) have indeed found evidence for 
the breakdown of the 6 - E RG theory of percolation specifically in d = 2. For dimensions 
d = 6 - E ,  this theory otherwise predicts the ordinary critical behaviour summarised by 
equation (1.1). At the same time, Andelman and Berker (1981) have found real-space 
RG evidence for a marginal operator describing the critical behaviour of the q = 1 Potts 
model in d = 2. The latter finding generated some interest in the possibility of logarith- 
mic corrections to the ordinary power-law exponents of 2~ percolation. Such interest 
was extended to series (Adler and Privman 1981) and numerical (Stauffer 1981) analysis 
of log corrections for properties such as S ( p ) ,  P ( p )  and [ ( p ) ,  but the results of this 
search were inconclusive. Unfortunately, such interest was never extended to K (  p ) ,  
for which a specific theoretical prediction now exists. 

In conclusion, the study presented in this paper indicates that the GPI approach to 
2~ percolation is consistent with series expansions and that its known predictions, 
including equation (1.3), are correct. It is not clear at present whether these findings 
would merely imply a breakdown of the hyperscaling relation, 2 - (Y = dv, with v = $ 
in the accepted theory, or whether the entire current scaling theory of 2~ percolation 
is at fault. Hopefully, further results from the GPI approach will emerge, allowing 
the construction of a consistent picture of the behaviour near p c .  
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